vendredi 29 mars 2024

les apports des applications éducatives aux apprentissages et au développement des enfants d'âge préscolaire


SÉMINAIRE INTERDISCIPLINAIRE
DU CENTRE JEAN PIAGET

Le séminaire annuel interdisciplinaire du Centre Jean Piaget portera sur le thème


QUELS SONT LES EFFETS DES ÉCRANS SUR LE DÉVELOPPEMENT DES ENFANTS ET DES ADOLESCENTS?

LES APPORTS DES APPLICATIONS ÉDUCATIVES AUX APPRENTISSAGES ET AU DÉVELOPPEMENT DES ENFANTS D'ÂGE PRÉSCOLAIRE

Conférence de Youssef Tazouti, professeur en psychologie de l'éducation, Université de Lorraine

Mercredi 27 mars 2024 | 18h15-19h45
Uni Mail - salle 1170

Plusieurs méta-analyses récentes ont montré que des interventions basées sur des applications éducatives peuvent améliorer les apprentissages des élèves notamment en littératie émergente et en numératie émergente (par ex. Kim et al., 2021 ; Verhoeven et al., 2020). Toutefois, pour que les applications éducatives contribuent efficacement aux apprentissages des élèves, elles doivent : 1° résulter d'une démarche de co-conception ; 2° posséder des qualités pédagogiques favorisant l'apprentissage et 3° faire l'objet d'une expérimentation (Tazouti et al., 2022).

Cette conférence se propose, dans un premier temps, de présenter les résultats des méta-analyses et des revues systématiques concernant les apports des applications éducatives aux apprentissages et au développement des enfants d'âge préscolaire. Dans un second temps, l'application AppLINOU (Apprendre avec Linou en maternelle) sera présentée. Celle-ci a été co-conçue par une équipe pluricatégorielle (chercheurs et acteurs éducatifs). Un focus sera fait sur les qualités requises (tels que le feedback, l'étayage, etc.) pour qu'une application soit adaptée au contexte de la classe. De même, les résultats d'une étude expérimentale et longitudinale portant sur 750 élèves scolarisés dans 32 écoles et suivis du début de la moyenne section (maternelle 4 ans) jusqu'au début du cours préparatoire (première année de l'enseignement élémentaire) seront présentés. Enfin, la discussion portera sur l'évolution d'AppLINOU avec l'émergence de nouvelles fonctionnalités (e.g. apprentissage adaptatif et tableau de bord enseignant) ainsi que sur les expérimentations en cours. 

Références

Tazouti, Y., Thomas, A., Hoareau, L., Luxembourger, Ch., & Jarlégan, A. (2022). Contribution des applications éducatives sur tablette tactile aux apprentissages de littératie et numératie émergentes. A.N.A.E., 178, 354-363.

Tazouti, Y., Thomas, A., Hoareau, L., Jarlégan, A., Hubert, B., & Luxembourger, C. (2023). Assessment of an Educational Classroom App's Impact on Preschoolers' Early Numeracy Skills. European Journal of Psychology of Educationhttps://doi.org/10.1007/s10212-023-00698-1

mercredi 20 mars 2024

L'esprit critique : Pourquoi l'enseigner, comment affronter les obstacles ?

L'esprit critique : pourquoi en sciences, n'est-ce pas un truc de philosophes ??

Les avancées dans les biosciences posent de nombreux nouveaux dilemmes éthiques, et les médias sociaux et la vulgarisation scientifique remettent en question les frontières entre la vérité, la fiction et la désinformation délibérée, soulignant la nécessité de développer la pensée critique chez les élèves. Développer l'esprit critique chez les élèves est une exigence institutionnelle (DIP). (2019) ici. La pensés scientifique est une façon de valider les connaissances qu'on pourrait résumer " j'entends cette affirmation, mais sur la base de quoi vous dites, ça ?" (Quelles méthodes, quelle justification, quelle discussion des limites).  Equiper nos élèves de cette compétence scientifique est donc particulièrement nécessaire aux futurs citoyen-ne-s et ne peut pas être délégué à d'autres disciplines.
Les enseignants en science se sentent souvent mal préparés pour aborder ces question sensibles, pour débattre des opinions qui peuvent susciter des réactions intenses et pour gérer des émotions en classe. Débattre peut être délicat contre-productif et parfois même modifier involontairement les opinions des élèves.  Extrait d'un texte (2020) sur la difficulté de gérer la dimension émotionnelle, dans les débats. Jump-To-Science : donner envie d'accéder aux articles                plutot que vulgariser encourage le lecteur à aller vérifier dans l'article d'origine ici.

L'esprit critique : pour mieux comprendre la pensée scientifique.

Le DIP propose une formation organisée par Philippe Lavorel et Cyril Obadia sur ce thème (JTS  "je ne crois pas à la science" …que faire en classe !? :une formation avec Lecointre)

Guillaume Lecointre, professeur au Muséum national d'Histoire naturelle en France et auteur de Savoirs, opinions, croyances : Une réponse laïque et didactique aux contestations de la science en classeJTS a compilé quelques extraits de Lecointre (2018) pour vous donner envie de lire cet ouvrage Différences entre savoirs, opinions, et croyances

Pour cela, Lecointre détaille les différences entre savoirs, opinions, et croyances (religieuses ou non). Il explique comment la science produit des connaissances. Il rappelle que le cours de sciences est un espace collectif dédié au savoir, sans que cela soit incompatible avec la liberté individuelle de croire ou la liberté d'opinion. Il détaille l'articulation de ces notions dans la démocratie républicaine française (d'où la référence fréquente à la laïcité qui est une valeur très explicite dans ce pays)

Lecointre distingue une opinion personnelle, une croyance (religieuse ou non) et un savoir, notamment sur la base de la manière dont une affirmation est assumée et légitimée.  Cf. Table 1 (Lecointre 2018).


Affirmation
Assumée…
Légitimée par…
Savoir
Collectivement
Justification rationnelle ;
Ouverture à la réfutation
Croyance
Individuellement
Autorité / confiance ;
Indifférence à la réfutation
Croyance religieuse
Collectivement
Autorité / confiance ;
Fermeture à la réfutation
Opinion
Individuellement
Divers

Table 1 d'après  (Lecointre 2018).

Lecointre développe ce qui fait qu'un savoir est scientifique. Notamment le type de preuve reconnue dans la discipline.
Pour éviter la mécompréhension entre Physique, chimie, biologie, philosophie,il argument que deux régimes de preuves distincts se valent : la preuve expérimentale ou preuve «hypothético-déductive» et la preuve historique souvent utilisée en paléontologie. Jump-To-Science : donner envie d'accéder aux articles                plutot que vulgariser encourage le lecteur à aller vérifier dans l'ouvrage de Lecointre p. 69 Extraits de JTS  "je ne crois pas à la science" …que faire en classe !? :une formation avec Lecointre)

On peut mentionner aussi Annabelle Kremer-Lecointre, enseignante agrégée en SVT est auteure de plusieurs ouvrages de sciences à destination du grand public et de la jeunesse dont :
  • Kremer, A., & Lecointre, G. (2023). Démystifier le vivant : 36 métaphores à ne plus utiliser. Belin éducation.
  • Kremer-Lecointre, A., & Rafaelian, A. (2023). La science à l'épreuve des mauvaises langues : 10 idées reçues décryptées pour bien comprendre la démarche scientifique. Delachaux et Niestlé.
Pour un autre éclairage de cette question, en particulier comment enseigner la science et exiger de l'appliquer à des exercices et des examens ne doit pas être en contradiction avec les croyances des élèves  voir aussi Taber, K. (2019). Ch 11  ( le lecteur saura utiliser un des traducteurs automatiques disponibles sur internet si nécessaire)

" Most importantly, the reflective approach does not ask students to change what they believe. In the science classroom, we do not champion or question anyone's religion. What we do ask in science is that students understand the scientific theory and they appreciate why this idea has become the current consensus understanding in science. If they can do that, they can answer examination questions in science. Perhaps a better understanding of the theory and the evidence may lead them to question a faith-based rejection of evolution, but that should not be the aim of teaching. […] Perhaps a better understanding of the scientific account will allow them to engage with arguments against the science from a position of securer knowledge of what it is that is actually being criticised. If we are confident of the science, then that is not something we should be concerned about. What is important though is that science is taught in a way that does not directly seek to challenge anyone's beliefs, and that the science itself is not compromised. Presenting natural selection as theoretical and the best current naturalistic account (rather than as a proven, absolutely true account) is true to the science, and to the nature of science. It is against the nature of science to ever teach it (or any other model or theory) as a dogma."  Jump-To-Science : donner envie d'accéder aux articles                plutot que vulgariser encourage le lecteur à aller vérifier dans l'ouvrage de Taber pp 173-174 ch 11,

Le dernier numéro spécial de la revue RDST aborde aussi cette question.


RDST 28 | 2023
Esprit critique et enseignement des sciences et des technologies

 Sous la direction de Manuel Bächtold et Magali Fuchs-Gallezot
Couverture RDST

Dans un contexte d'incitation institutionnelle forte à exercer et développer l'esprit critique dans l'enseignement des sciences et des technologies, il a paru pertinent au comité de rédaction de RDST d'interroger les recherches en didactiques des sciences et des technologies sur ce sujet. Au cœur d'enjeux éducatifs aussi bien scientifiques que citoyens, construit complexe, susceptible de recevoir diverses définitions, l'esprit critique dans l'enseignement des sciences fait l'objet de différentes lignes de recherche empiriques et d'approches plus théoriques dont les articles publiés dans ce numéro portent la trace. Ainsi, les six articles de ce dossier reflètent divers aspects de ces préoccupations et s'organisent selon la logique suivante : les deux premiers articles apportent des éléments théoriques et empiriques sur le construit « esprit critique », les représentations que peuvent en avoir des enseignants de SVT, et comment ils se représentent son enseignement ; les deux articles suivants interrogent le développement de l'esprit critique en relation avec des pratiques scientifiques (investigation et problématisation) ; enfin les deux derniers articles examinent, quant à eux, la question de l'enseignement de l'esprit critique dans le contexte de débats portant sur des questions socio-scientifiques.

Références

  • Département de l'instruction publique, de la formation et de la jeunesse (DIP). (2019). Éducation numérique Référentiel de compétences et de culture numériques à l'EO et l'ESII. https://edu.ge.ch/sem/system/files/telecharger-actu/dip_refer-entiel_edu_numeriquev5_1.pdf
  • Kremer, A., & Lecointre, G. (2023). Démystifier le vivant : 36 métaphores à ne plus utiliser. Belin éducation.
  • Kremer-Lecointre, A., & Rafaelian, A. (2023). La science à l'épreuve des mauvaises langues : 10 idées reçues décryptées pour bien comprendre la démarche scientifique. Delachaux et Niestlé.
  • Lecointre, G. (2018). Savoirs, opinions, croyances : Une réponse laïque et didactique aux contestations de la science en classe. Belin éducation.
  • Taber, K. (2019). MasterClass in science education : Transforming teaching and learning. 
  • Lombard, F., Schneider, D.,K., Merminod, M., Weiss, L., (2020) Balancing Emotion and Reason to Develop Critical Thinking About Popularized Neurosciences : A New Learning Design Approach, Science & Education, 29(5), 1139-1176. http://doi.org/10.1007/s11191-020-00154-2

soirée publique printanière du Bioscope Jeudi 21 mars


Vous êtes cordialement invité-es à la soirée publique printanière du Bioscope à la MEA.  

  

DÉCOUVRIR L'ADN 

Jeudi 21 mars | 18h à 20h | Bioscope

Tout public | Entrée libre 

 

De quelle couleur est mon ADN ? Puis-je le voir à l'œil nu ? Y a-t-il de l'ADN non humain dans mon corps ? Détermine-t-il mon goût pour les brocolis ? Venez répondre à ces questions au travers d'ateliers pratiques en compagnie de la généticienne Christelle Borel, PhD, de l'Université de Genève et de notre équipe de biologistes passionné-es. 

Apportez vos idées, vos questions, votre expérience ! 

lundi 4 mars 2024

CERN :Offres éducatives à destination des enseignants et des élèves





Offres éducatives à destination des enseignants et des élèves

Hiver 2023-2024 | 22.02.2023
Retrouvez toutes les offres sur
https://voisins.cern/fr/schools


 

2017 MasterclassMasterclasses internationales – encore 2 sessions disponibles

Mardi 12 et jeudi 14 mars 2024, toute la journée
Au CERN

Inscriptions par e-mail (voir ci-dessous)

Chaque année, plus de 13'000 étudiants du secondaire II de 60 pays différents se rendent dans environ 225 universités et centres de recherche pour une journée afin de percer les mystères de la physique des particules. Le CERN accueille quatre de ces Masterclasses.

La journée commence par une introduction au CERN et une initiation à la physique des particules. Durant l'exercice pratique, les étudiants sont ensuite invités à analyser les traces de collisions de particules observées dans les détecteurs du CERN avec l'aide de nos scientifiques. En fin de journée, ils partagent lors d'une vidéoconférence (en anglais) leurs résultats avec d'autres instituts participant au programme le même jour dans le monde entier.

Les Masterclasses sont destinées aux classes de 1ère et Terminale scientifique des lycées français, et aux élèves d'option scientifique de 3ème et 4ème des collèges suisses. Attention, la capacité de la salle est limitée à 26 places, adultes inclus.

Gratuit, sur inscription. Places strictement limitées.

Pour vous inscrire, contactez-nous par e-mail en fournissant les indications suivantes : 

  • Date de préférence (12 ou 14 mars)
  • Nom de l'établissement
  • Niveau de la classe (première, terminale, 3e collège etc.)
  • Âges minimum et maximum des élèves (min. 16 ans)
  • Nombre de participants (26 maximum, accompagnants inclus)
    • Nombre d'élèves 
    • Nombre d'accompagnants adultes
  • Langue de la Masterclass (FR, EN ou autre langue selon disponibilité) - notez que la vidéoconférence de fin de journée est systématiquement en anglais

Portail de la science du CERN – Offre pour les groupes scolaires

Du mardi au dimanche | 08h00 – 18h00 (expositions et autres activités : 09h00 – 17h00)
Au CERN

Informations et inscriptions sur https://visit.cern/fr/group-bookings

S'adressant à des publics de tous âges, le Portail de la science est le nouveau centre d'accueil des visiteurs du CERN qui a ouvert au public en octobre 2023. Situé à côté du Globe de la science et de l'innovation, il héberge des espaces d'exposition immersifs, des laboratoires éducatifs pour des expériences pratiques, un auditorium pour accueillir des événements destinés à la communauté scientifique et au grand public, ainsi qu'une boutique et un restaurant.

Les groupes (minimum 12 personnes) qui désirent visiter le Portail de la science du CERN peuvent réserver les activités ci-dessous.
Les réservations ouvrent neuf mois à l'avance et les créneaux se remplissent très rapidement.

1/ Expositions interactives

Découvrez le CERN, notre univers et les merveilles de la physique quantique avec de vrais objets scientifiques et des expositions interactives.

De 30 à 60 minutes Recommandé à partir de 8 ans

2/ Ateliers en laboratoires éducatifs

Découvrez la science et l'ingénierie au CERN dans le cadre d'ateliers pratiques adaptés au profil de votre groupe.

45 minutes (5-15 ans) ou 90 minutes (16-19 ans) Recommandé à partir de 5 ans

3/ Visites guidées

Découvrez avec nos guides certains des lieux de travail réels du CERN, tels que les salles de contrôle, les installations de recherche ou d'ingénierie.

Environ 180 minutes – Recommandé à partir de 12 ans

En complément, des activités sans réservation peuvent être disponibles le jour de votre visite, telles que des spectacles scientifiques et des projections de films. Consultez notre programme.

Expositions disponibles en 5 langues (français, anglais, allemand, italien, espagnol) | Laboratoires et visites guidées disponibles en 30 langues (selon disponibilités des guides).

Gratuit Inscription obligatoire (réservation possible et conseillée 9 mois à l'avance)

 


Autres activités disponibles

  • Visites de scientifiques du CERN dans les classes | Toute l'année | Dans vos classes ou en visioconférence | Dès 8 ans
    Invitez un chercheur ou une chercheuse du CERN à donner une conférence sur son métier directement dans votre classe !
  • Visites et conférences virtuelles sur le CERN | Toute l'année | En visioconférence | Recommandé dès 16 ans
    Le CERN offre aux enseignants et à leurs élèves la possibilité de participer en direct, depuis chez eux ou depuis la salle de classe, à une visioconférence sur le Laboratoire, donnée par un scientifique du CERN.

Retrouvez également les conditions de participation, les procédures d'inscription et toutes les informations pratiques de nos autres activités pour les scolaires sur https://voisins.cern/fr/offers.

 


Événements à venir – À vos agendas !

Les informations sur les événements à venir seront disponibles sur https://voisins.cern/fr/upcoming_events au fur et à mesure de l'ouverture des inscriptions.

La coopération chez les grands singes : à l’origine de nos bonnes manières ? Mardi 12 mars

Rendez-vous de la Société Zoologique de Genève 2024
Mardi 12 mars 2024 , 20h00  aula du collège de Saussure,  Vieux-ch-Onex 9, 1213 Petit Lancy. Entrée toujours gratuite !

La Société Zoologique vous propose  la conférence donnée par

Dr. Emilie Genty, de l'Université des Neuchâtel, sur le thème :

La coopération chez les grands singes : à l'origine de nos bonnes manières ?

Imaginez-vous dans une salle de bal où vous vous apprêtez à inviter un partenaire à danser. Pour cela vous devrez respecter un certain protocole: choisir un partenaire, échanger un regard, vous approcher, tendre la main, vous assurer que l'autre accepte votre invitation, avant de débuter la danse et de synchroniser vos pas au rythme de la musique. Puis, une fois la danse terminée, sourire et remercier votre partenaire avant de vous séparer. Toutes ces étapes font partie des règles à respecter pour assurer le bon déroulement d'une action conjointe avec une intention partagée. La coopération entre humains est en effet régie par de nombreuses règles et conventions qui permettent de collaborer au mieux et de maintenir de bonnes relations sociales. Si la coopération humaine n'a pas d'égale, de nombreuses espèces  animales, notamment les grands singes, collaborent  quotidiennement dans l'exécution de tâches communes. Nos recherches ont mis en évidence que lorsqu'ils s'engagent dans des activités conjointes, les grands singes utilisent eux aussi des regards, des cris et gestes spécifiques pour initier et terminer une interaction sociale. Ils sont capables de moduler l'utilisation de ces signaux de communication en fonction du contexte social afin d'affiner le message et d'éviter toute ambiguïté. De plus, leurs efforts de communication varient en fonction des rapports de pouvoir et d'affinité entre les partenaires, tout comme nous le faisons dans les règles de politesse. Cette similarité entre grands singes et humains nous permet d'en apprendre davantage sur les origines de la coopération humaine et sur l'évolution du langage.

Le programme complet de la Société Zoologique


20h, entrée libre. Flyer ici.

Prix Paul Géroudet, Festival international du film ornithologique de Ménigoute.

mardi 12 mars : Communication pour la coordination d'actions jointes chez les grands singes

mardi 14 mai : Les mutualismes entre des poissons des récifs coraliens

Prof. Redouan Bshary, UNINE

Wendy Strahm et Denis Landenbergue, Projet Balbuzard

Laurent Tillon, biologiste et ingénieur forestier à l'ONF. Une collaboration SZG et la Société Botanique de Genève.

Une collaboration SZG et le Groupe Ornithologique du bassin genevois.

Présentation prix SZG – étudiants HEPIA – doctorant ECOVO UNIGE. Une collaboration SZG, KarchGE, HEPIA et UNIGE.

En collaboration avec   


--

vendredi 1 mars 2024

Semaine du Cerveau 11 au 15 mars . CONFÉRENCES ET SPECTACLE "Dans ma tête"

Se faire plaisir et fasciner les élèves avec des conférences de la semaine du cerveau 11 au 15 mars

A nouveau cette année, la semaine du cerveau propose des conférences magnifiques qui sont  d'un niveau accessible à nos élèves un peu intéressés ou bien préparés en classe. Certaines classes sont justement en train de traiter le système nerveux en ce moment,et ces thèmes pourraient stimuler certains travaux de Maturité pour affiner leur problématique...
C'est aussi un privilège de notre discipline Biologie : elle progresse et les savoirs de référence se renouvellent !
Savourer le plaisir de comprendre et de nourrir votre curiosité.

CONFÉRENCES ET SPECTACLE

Uni Dufour Auditoire Piaget (U600, sous-sol)
24 rue Général-Dufour, Du lundi 11 au vendredi 15 mars à 19h Entrée libre

Dans ma tête           https://semaineducerveau.ch/


  • LUNDI 11 MARS | CONFÉRENCE ET TABLE RONDE :  AUX FRONTIÈRES DE LA SANTÉ MENTALE: LE CAS DE L'AUTISME


Intervenant-es: Thomas Bourgeron (Institut Pasteur, Paris), Denis Jabaudon (UNIGE), Stefan Kaiser (HUG/UNIGE) et Marie Schaer (UNIGE)

  • MARDI 12 MARS | CONFÉRENCE : EN MANQUE D'ATTENTION

L'attention est une fonction cognitive essentielle qui nous permet de sélectionner les informations pertinentes. Les mécanismes cérébraux attentionnels ainsi que les controverses autour du diagnostic et du traitement des troubles de l'attention seront mis en lumière.
Intervenant-es: Nader Perroud (HUG/UNIGE) et Ilaria Sani (UNIGE)

  • MERCREDI 13 MARS | CONFÉRENCE : ADDICTION ALIMENTAIRE

Manger pour le plaisir est un plaisir qui peut devenir problématique. Les circuits qui sous-tendent la prise alimentaire hédonique compulsive sont mis en parallèle avec ceux de l'addiction aux substances.
Intervenant-es: Christian Lüscher (UNIGE) et Valérie Schwitzgebel (HUG)

  • JEUDI 14 MARS | CONFÉRENCE : LA PEUR AUX TROUSSES

L'anxiété fait intervenir différents circuits cérébraux. Comment des déséquilibres dans ces circuits peuvent-ils contribuer au développement des troubles anxieux et quelles sont les manifestations cliniques et les dernières approches thérapeutiques?
Intervenant-es: Paolo Cordera (HUG) et Nathalie Ginovart (UNIGE)

  • VENDREDI 15 MARS | SPECTACLE : HEUREUX SOIENT LES FÊLÉS - ONE MAN SHOW

Morceaux choisis d'une jeune existence rythmée par cette perpétuelle urgence de vie où folie et sensibilité sont des affaires quotidiennes, jonchées de ces personnages délirants mais toujours criants d'amour et de vérité.
Intervenant: François Mallet

mardi 13 février 2024

Concevoir des protéine nouvelles — une approche "ingénieur" depuis de nouvelles structures jusqu'à des fonctions programmable

En bref

L'intelligence artificielle (IA) entraînée sur de vastes ensembles de données de séquences et de structures de protéines permet désormais de composer - sans partir de protéines trouvées dans la nature (=de novo ) des protéines avec de nouvelles formes et de nouvelles fonctions moléculaires.
De nouvelles structures protéiques et des assemblages (structure quaternaire) peuvent être conçues et vérifiés expérimentalement avec un taux de succès considérable. Et il devient possible d'attaquer des problèmes difficiles nécessitant un contrôle et un réglage des interactions moléculaires. Ces approches émergentes intègrent dès la conception des principes d'ingénierie : la réglabilité, la contrôlabilité et la modularité. Cette approche synthétique à partir de zéro permet d'explorer des fonctions cellulaires, et des voies  de signalisation cellulaire. Mais de nombreux défis restent à résoudre. Traduction adaptée d'après Kortemme, T. (2024) Jump-To-Science : donner envie d'accéder aux articles                plutot que vulgariser encourage le lecteur à aller vérifier dans l'article d'origine :  ici

Une nouvelle approche - plus "ingénieur" des sciences de la vie

Les protéines peuvent accélérer de plusieurs ordres de grandeur la vitesse de réactions chimiques, de convertir l'énergie lumineuse en énergie chimique et de réguler des myriades de processus au sein des cellules et des organismes avec la précision permettant la vie. Ces fonctions puissantes des protéines naturelles en ont fait des outils de choix pour l'ingénierie moléculaire. Elles ont permis la compréhension des mécanismes des fonctions moléculaires et cellulaires et des applications pratiques telles que la catalyse, la biotechnologie. Elles ont fourni des outils de précision pour la recherche scientifique et médicale. 

Ce nouveau domaine de la conception de protéines révise maintenant fondamentalement cette approche. Plutôt que de ré-ingéniérer des protéines existantes, il devient possible de construire à partir de zéro des protéines avec des architectures et des fonctions complexes, aussi puissantes que celles présentes dans la nature mais nouvelles et programmables par l'utilisateur. Traduction adaptée d'après Kortemme, T. (2024) Jump-To-Science : donner envie d'accéder aux articles                plutot que vulgariser encourage le lecteur à aller vérifier dans l'article d'origine :  ici

Si les méthodes classiques sont si remarquables, pourquoi réinventer ?

En effet, pourquoi construire quelque chose de nouveau si l'on peut emprunter, réutiliser et reprogrammer à partir de protéines naturelles, voire même parvenir à des fonctions n'existant pas dans la nature. En effet, l'approche consistant à faire évoluer ou recombiner des composants protéiques existants pour de nouvelles fonctions a été incroyablement réussie, et la conception de novo a longtemps été en retard en raison de ses limitations apparentes. Les protéines conçues de novo sont souvent moins actives que leurs homologues naturelles et ont nécessité, pour améliorer leur activité de vastes de criblage par évolution dirigée. De plus de nombreuses fonctions souhaitées semblaient hors de portée.

Concevoir des protéines fonctionnelles entièrement de novo, sans les caractéristiques propres aux protéines évoluées,  pourrait présenter plusieurs avantages distincts (Figure 1A).
Le plus évident est de permettre des fonctions qui n'ont pas encore été observées dans la nature (pour lesquelles il n'y a pas de points de départ évidents pour l'évolution dirigée).
Le deuxième avantage est que la conception de novo pourrait permettrait de créer des protéines intégrant des principes fondamentaux d'ingénierie : la réglabilité, la contrôlabilité et la modularité.
Il s'agit donc de concevoir des protéines qui seraient
(1) réglables, de sorte qu'il soit facile de générer des versions aux paramètres biochimiques précisément modifiés,
(2) contrôlables, de sorte que la fonction protéique réponde aux stimuli internes et externes, et 
(3) modulaires, de sorte que nous puissions intégrer facilement différentes fonctions dans des machines moléculaires composites et des ensembles.
Traduction adaptée d'après Kortemme, T. (2024) Jump-To-Science : donner envie d'accéder aux articles                plutot que vulgariser encourage le lecteur à aller vérifier dans l'article d'origine :  ici

Fig 1: Figure 1 design de protéines De novo avec l'AI  [img]. Source : Kortemme, T. (2024)
(A) Concevoir des protéines de novo  permet de concevoir des protéines intégrant des principes d'ingénierie : être (1) réglables (tunable) dans leurs propriétés quantitatives (taux, affinités, etc.), (2) contrôlables par des entrées variées, et (3) modulaires de telle sorte que les éléments protéiques puissent être liés pour obtenir des comportements d'entrée/sortie variés.
(B) Des objectifs définis par l'utilisateur (à gauche) et des entrées (au milieu) sont utilisés pour générer des protéines avec de nouvelles structures et fonctions (à droite). Les catégories 1 à 4 représentent des instructions de plus en plus simples conduisant à des résultats de conception de plus en plus complexes. Les boîtes indiquent des objectifs de conception avec des exemples validés expérimentalement. (1) Les méthodes basées sur l'IA pour concevoir de nouvelles structures protéiques peuvent être sans contrainte (générer diverses structures protéiques ; les hélices α sont indiquées en rouge et les brins β en jaune) ou être contraintes pour diversifier une structure particulière. (2) La plupart des méthodes actuelles pour concevoir une fonction spécifient un "motif" avec des positions et des orientations de résidus définies dans un site fonctionnel. Dans une deuxième étape, une protéine est générée de novo entourant et stabilisant la géométrie précise du site fonctionnel. Ce processus est appelé "échafaudage de motif". (3) Des avancées dans les méthodes basées sur l'IA sont en développement et définissent uniquement la cible, la méthode de conception générant un liant prédit. (4) À partir d'une fonction cible (par exemple, convertir le substrat S en produit P), une méthode d'IA pourrait générer une protéine répondant à ces exigences. Actuellement, les modèles linguistiques protéiques formés sur des familles spécifiques de protéines ou de grands ensembles de données expérimentales peuvent générer de nouvelles séquences avec des fonctions similaires à celles de l'ensemble d'entraînement.


Principes de conception de la fonction : Motifs et échafaudages

De manière générale, la conception computationnelle de fonctions (Figure 2) implique deux étapes : la première étape définit les exigences pour la fonction, et la deuxième étape optimise une structure protéique, et une séquence qui correspondent à ces exigences. Avec les progrès de l'apprentissage profond (deep learning) appliqué aux protéines, la manière dont ces étapes sont réalisées évolue rapidement, avec des taux de réussite de plus en plus remarquables. Traduction adaptée d'après Kortemme, T. (2024) Jump-To-Science : donner envie d'accéder aux articles                plutot que vulgariser encourage le lecteur à aller vérifier dans l'article d'origine :  ici
Principes de conception de la fonction : Motifs et échafaudages,De manière générale, la conception computationnelle de la fonction (Figure 3) implique deux étapes : la première étape définit les exigences pour la fonction, et la deuxième étape optimise une structure protéique et une séquence qui correspondent à ces exigences. Avec les progrès de l'apprentissage profond appliqué aux protéines, la manière dont ces étapes sont réalisées évolue rapidement, avec des taux de réussite de plus en plus remarquables.
Fig 2 : Conception De novo de fonctions moléculaires  [img]. Source : Kortemme, T. (2024)

Protéines de novo pour contrôler les fonctions cellulaires

Les systèmes de signalisation synthétiques capables de contrôler les processus biologiques ont déjà de nombreuses applications en biologie fondamentale, en bio-ingénierie et en médecine(les récepteurs d'antigènes chimériques [CAR] en sont un exemple remarquable). Jusqu'à présent, la grande majorité de ces systèmes de signalisation utilisent des composants d'origine naturelle recombinés ou reprogrammés pour de nouvelles fonctions. On peut maintenant, en principe, construire des systèmes de signalisation protéique entièrement à partir de zéro. Contrairement aux protéines naturelles qui ont évolué pour fonctionner dans des contextes spécifiques, les protéines de novo pourraient être conçues avec une fonction indépendante du contexte permettant une ajustabilité et un comportement modulaire (Figure 1). De plus, de nouvelles fonctions encore jamais observées dans la nature pourraient être réalisées : détecter de nouveaux signaux, intégrer des signaux, effectuer des opérations logiques et réguler précisément les comportements biologiques en aval (Figure 3). Pour chacune de ces fonctions, on pourrait générer des composants élémentaires avec des propriétés ajustables (telles que la cinétique de liaison et de détachement, des géométries d'assemblage diverses, etc.), et ces composants pourraient être liés de manière modulaire pour générer divers comportements de signalisation. Traduction adaptée d'après Kortemme, T. (2024) Jump-To-Science : donner envie d'accéder aux articles                plutot que vulgariser encourage le lecteur à aller vérifier dans l'article d'origine :  ici
Figure thumbnail gr4
Fig 3: Protéines de novo pour contrôler les fonctions cellulaires [img] Source : Kortemme, T. (2024)

Limites

Dans sa conclusion, Kortemme, T. (2024) liste les potentiels immenses de la conception computationnelle de novo  de protéines. (ici). Puis discutes les limites.
De nombreux défis passionnants restent à relever. A l'horizon,  la prédiction du comportement des protéines au-delà de la structure : des paramètres quantitatifs tels que les affinités de liaison, la dynamique conformationnelle et en fin de compte, les fonctions cellulaires. Les progrès dans l'apprentissage profond nécessiteront des données informatives à une échelle suffisante pour permettre une conception précise de ces comportements. Les fonctions avancées des protéines sont souvent composites, couplant les signaux d'entrée à des sorties fonctionnelles diverses ; la conception prédictive devrait donc être capable d'intégrer de multiples objectifs. L'extraction de principes à partir des données est importante pour rendre les propriétés de protéines souhaitées réellement réalisables. De nouvelles opportunités résident dans la construction de fonctions complexes à partir de zéro. Ici, les protéines de novo pourraient être conçues a priori avec les principes d'ingénierie de l'ajustabilité, de la contrôlabilité et de la modularité. Des familles de tels composants de novo, dotés de propriétés ajustables et contrôlables, pourraient être recombinées pour générer des comportements divers. L'interfaçage de ces systèmes de novo avec les processus biologiques pourrait permettre à la fois de déconstruire les fonctions cellulaires et de les contrôler. Le domaine en évolution rapide de la conception de protéines de novo offre un environnement passionnant pour la créativité des scientifiques et ingénieurs pour aborder les nombreux défis non résolus, bien plus nombreux que ceux déjà "résolus", aux interfaces des fonctions biologiques et des fonctions nouvelles à la nature. Traduction adaptée d'après Kortemme, T. (2024) Jump-To-Science : donner envie d'accéder aux articles                plutot que vulgariser encourage le lecteur à aller vérifier dans l'article d'origine :  ici

(Les membres Jump-To-Science peuvent obtenir ces articles).

Références:


mardi 23 janvier 2024

IA et éducation : menace ou opportunités... quelques réflexions

L'Intelligence Artificielle et l'éducation... une menace sur les activités et l'évaluation ?   

La façon dont la science se fait et se publie est déjà en transformation... Dans la revue Science, Sibel Erduran (2023) ici , titre "L'IA transforme la façon dont la science se fait. L'enseignement des sciences doit refléter ce changement".Elle mentionne un document de l'UNESCO Guidance for generative AI in education and research ici.Elle y discute comment les approches traditionnelles sont les plus menacées par l'IA générative (ChatGPT par exemple). Surtout lorsqu'elles font appel aux objectifs d'apprentissage les plus basiques (mémoriser, reformuler, …).

Un extrait
"Certaines des préoccupations concernant l'impact de l'IA sur l'apprentissage reposent sur des notions dépassées de l'apprentissage humain. L'enseignement scientifique traditionnel a favorisé la transmission de faits et le rappel d'informations en tant qu'indicateurs de l'apprentissage. Par exemple, on attendait traditionnellement des élèves qu'ils mémorisent l'équation chimique de la photosynthèse ou qu'ils soient capables de réciter la loi d'Ohm. Dans cette représentation de l'apprentissage, les informations seraient facilement récupérées grâce à l'IA, ce qui rendrait ambigus les résultats d'apprentissage des étudiants. En revanche, des perspectives plus contemporaines sur l'apprentissage préconisent des compétences telles que la pensée critique comme des résultats importants de l'apprentissage, qui peuvent potentiellement être copiés dans une certaine mesure mais sont difficiles à imiter grâce à l'IA. Les compétences tournées vers l'avenir Future-oriented skills, telles que la réflexion sur des scénarios, la pensée systémique et la gestion de l'incertitude et de la complexité, nécessitent plus que le rappel ou même la gestion de grands ensembles de données. Ils impliquent une créativité et une innovation considérables. Certains psychologues cognitifs  soutiennent que même si l'IA peut aider à résumer et à généraliser les informations existantes, elle n'est pas conçue pour répondre à des compétences humaines plus sophistiquées qui nécessitent de l'innovation, comme la conception de théories. Cependant, la recherche et le développement émergents dans le domaine de l'IA remettent en question ces visions, par exemple en explorant le potentiel des systèmes d'IA pour mettre en évidence les angles morts des hypothèses scientifiques blind spots in scientific hypotheses et contribuer à générer de nouvelles questions." Traduction automatique de Erduran, S. (2023) Jump-To-Science : donner envie d'accéder aux articles                plutot que vulgariser encourage le lecteur à aller vérifier dans l'article d'origine  ici

Les objectifs d'apprentissage les plus menacés par l'IA… 

Stasse, S. (2023) ici s'inspire d'un texte de l'Oregon state University ici pour montrer lesquels des objectifs de Bloom sont lre plus menacés par l'IA générative Cf. Fig. 1 .
On notera que le verbe "comprendre" au sens de Bloom n'a en science pas la même signification : en science on peut considérer qu'un élève a compris s'il peut utiliser les explications d'un phénomène (vivant, physique, chimique) vues en classe pour expliquer une observation ou prédire ce qui se passera dans une situation similaire ou peu différente "Appliquer" dans la  classification de Bloom. De nombreux scientifiques ne se reconnaissent pas bien dans cette classification, et Crowe et al. (2008) ici clarifient en décrivant comment ces objectifs obscurs se traduisent concrètement en classe, pour concevoir des activités, les évaluer, etc. Jump-To-Science : donner envie d'accéder aux articles                plutot que vulgariser encourage le lecteur à aller vérifier dans l'article d'origine  ici

Bloom revisté  à la lumipère de lAI

Fig 1: Les objectifs d'apprentissage;  ceux que l'IA menace et les compétences spécifiques humaines [img]. Source : Stasse, S. (2023) ici

Plus loin, Sibel Erduran (2023) ici , montre comment des approches pédagogiques de l'IA générative peuvent non seulement innover mais aussi stimuler les élèves et sans doute les enseignantes et enseignants. Surtout lorsqu'elles dépassent l'"appris par coeur" et font appel aux objectifs plus élevés (comprendre ( = appliquer dans le langage de Bloom), évaluer, créer, …) - qui sont d'ailleurs les plus spécifiques de la pensée scientifique. Et correspondent assez aux exigences du Plan d'action en faveur de l'éducation numérique.(DIP). (2019).ici
Elle montre que des exemples existent déjà, dont on peut s'inspirer:

"De nombreux enseignants et étudiants du secondaire utilisent déjà des plateformes telles que ChatGPT. En fait, l'utilisation de ChatGPT peut potentiellement simuler ce que font les scientifiques eux-mêmes lorsqu'ils utilisent de tels outils pour générer des connaissances documentaires pour les manuscrits académiques. Des stratégies pédagogiques telles que le questionnement (par exemple: "Comment savons-nous que ce texte produit par ChatGPT est correct ?") peuvent être envisagées à des fins spécifiques d'apprentissage de ce qu'est la nature de la science (NOS) infusé par l'IA, par exemple pour encourager les étudiants à générer et à appliquer des critères d'évaluation de l'exactitude. De telles approches devront cependant être accompagnées d'une formation des enseignants non seulement pour qu'ils utilisent les outils et les données de l'IA, mais aussi pour comprendre comment la science évolue plus largement à l'ère de l'IA.
Bien que le programme NOS infusé par l'IA dans l'enseignement des sciences soit un défi de taille, certaines interventions éducatives existantes 
(existing educational interventions) peuvent fournir des lignes directrices pour guider les objectifs au sein du système éducatif et mettre en évidence la manière de s'attaquer aux angles morts fréquents dans la réforme éducative. Par exemple, des réseaux scolaires ouverts open schooling networks peuvent être créés pour favoriser les communautés d'apprentissage impliquant un large éventail de partenaires, notamment les étudiants, les enseignants, les formateurs d'enseignants, les scientifiques et les décideurs politiques. Si l'enseignement scientifique secondaire doit former la future génération de scientifiques et les doter de compétences pertinentes et actuelles, il est essentiel qu'il s'adapte aux derniers développements de la recherche scientifique appuyée sur l'IA. Autrement, l'écart entre la science que pratiquent les chercheurs et d'autres scientifiques et la science scolaire risque de se creuser au point  qu'au moment où les élèves du secondaire entreront à l'université, leur compréhension de ce qu'est la science sera déjà dépassée." Traduction automatique de Erduran, S. (2023) Jump-To-Science : donner envie d'accéder aux articles                plutot que vulgariser encourage le lecteur à aller vérifier dans l'article d'origine  ici

L'Intelligence Artificielle et l'éducation : des parallèles troublants… des pistes pour stimuler la réflexion ?

Les résultats de l'IA sont liés notamment à la manière dont on entraîne ces programmes… Depuis une perspective éducative, il est évidemment tentant d'établir des parallèles avec la façon dont on éduque les élèves. 
On n'est pas surpris que les IAmanifestent des mêmes biais que ce que les
  sources qu'on  leur a donné  pour les éduquer (p. ex. Castelvecchi,  2020) ici Autrefois déjà on disait en informatique GIGO (garbage in garbage out).  
Quand on voit discuter les stratégies d'apprentissage des IA - diverses et plus ou moins efficaces (Dennis, et al., 2020) JTS Ici ) ou produisant des apprentissages difficilement prévisibles, voire complètement orientés vers le test comme le discutent des chercheurs avec le prof. C. Lovis de l'UNIGE- HUG (Turbé, et al. 2023) ici, on est tenté
d'évoquer la discussion sur les pédagogies et leur efficacité…
On sait depuis longtemps en éducation que les élèves apprennent ce qui va être évalué, ils le devinent même quand l'enseignante ou l'enseignant dit le contraire (Perrenoud, 2004).

Evidemment tous ces parallèles sont discutable … Et bien discutons-en ! Il n'est pas certain que les chercheurs en IA surfant cette vague de succès voudront de notre réflexion, mais cela peut amener à repenser nos pratiques.

Une IA "se parle" à elle-même; cela lui permet de s'autocorriger, mieux transposer à des situations nouvelles, et visibilise le "raisonnement" ... un peu comme la métacognition en éducation humaine ?

Abstract de de Hu, S. et Clune, J. (2023) ici

"Le langage est souvent considéré comme un aspect clé de la pensée humaine, offrant des capacités exceptionnelles pour généraliser, explorer, planifier, replanifier et s'adapter à de nouvelles situations. Cependant, les agents d'apprentissage par renforcement (RL) n'atteignent - et de loin - des performances de niveau humain dans aucune de ces capacités. Nous émettons l'hypothèse que l'une des raisons de ces déficits cognitifs est qu'ils ne bénéficient pas des avantages de la pensée linguistique et que nous pouvons améliorer les agents d'IA en les entraînant à penser comme le font les humains. Nous introduisons un nouveau cadre d'apprentissage par imitation, le clonage de pensée, dont l'idée est non seulement de cloner des comportements humains, mais également les pensées que les humains ont lorsqu'ils exécutent ces comportements. Alors que nous nous attendons à ce que le clonage de pensée brille vraiment à grande échelle sur des ensembles de données de taille Internet sur des humains pensant à voix haute tout en agissant (par exemple, des vidéos en ligne avec transcriptions), nous menons ici des expériences dans un domaine où les données de réflexion et d'action sont générées de manière synthétique. Les résultats révèlent que le clonage de pensée apprend beaucoup plus rapidement que le clonage comportemental et que son avantage en termes de performances augmente à mesure que les tâches de test sont plus loin des tâches d'apprentissage, soulignant sa capacité à mieux gérer des situations nouvelles. Le clonage de pensée offre également des avantages importants en termes de sécurité et d'interprétabilité de l'IA, et facilite le débogage et l'amélioration de l'IA. Parce que nous pouvons observer les pensées de l'agent, nous pouvons (1) diagnostiquer plus facilement pourquoi les choses ne vont pas, ce qui facilite la résolution du problème, (2) orienter l'agent en corrigeant sa pensée, ou (3) l'empêcher de faire des actes dangereux, parmi les choses qu'il envisage de faire. Dans l'ensemble, en formant les agents à penser et à se comporter, le clonage de pensée crée des agents plus sûrs et plus puissants." Traduction automatique Jump-To-Science : donner envie d'accéder aux articles                plutot que vulgariser encourage le lecteur à aller vérifier dans l'article d'origine :  ici

La métacognition dans l'apprentissage …

De nombreuses recherches mettent en évidence l'importance de la métacognition dans l'apprentissage (humain). Cf. p .ex une présentation concise de ce concept, de son efficacité et des moyens de l'utiliser en classe par Kimberly Tanner (2010) ici.
Pour vous donner envie de lire son texte JTS en a extrait quelques définitions :
  • La métacognition fait référence à la connaissance de ses propres processus cognitifs ou de tout ce qui s'y rapporte, par exemple les propriétés des informations ou des données pertinentes pour l'apprentissage. Par exemple, je m'engage dans la métacognition si je remarque que j'ai plus de difficulté à apprendre A que B ; s'il me semble que je devrais vérifier C avant de l'accepter comme un fait. (Flavel, 1976)
  • Métacognition : conscience ou analyse de ses propres processus d'apprentissage ou de réflexion. (Merriam-Webster, 2012)
  • La métacognition comprend également l'autorégulation – la capacité d'orchestrer son apprentissage : planifier, surveiller les réussites et corriger les erreurs le cas échéant – tout cela est nécessaire pour un apprentissage intentionnel efficace… La métacognition fait également référence à la capacité de réfléchir sur sa propre performance. (Conseil national de recherches, 2000)
  • Les élèves apprennent à suivre et à diriger leurs propres progrès, en posant des questions telles que « Qu'est-ce que je fais maintenant ? », « Est-ce que cela me mène quelque part ? », « Que pourrais-je faire d'autre à la place ? » Ce niveau métacognitif général aide les élèves à éviter de persévérer dans des démarches improductives… (Perkins et Salomon, 1989)
Tanner y discute dans la table 1 des exemples d'auto-questions pour promouvoir la métacognition des élèves sur leur apprentissage
• De quoi parlait la séance de cours d'aujourd'hui ? • Qu'ai-je entendu aujourd'hui qui est en conflit avec ma compréhension antérieure ? • Quel est le lien entre les idées de la séance de cours d'aujourd'hui et les cours précédents ? • Que dois-je faire activement maintenant pour obtenir des réponses à mes questions et clarifier mes confusions ? • Qu'est-ce que j'ai trouvé le plus intéressant dans le cours d'aujourd'hui ?
Dans quelle mesure ai-je réussi à atteindre les objectifs de la tâche ? • Dans quelle mesure ai-je utilisé les ressources à ma disposition ? • Si j'étais l'instructeur, qu'est-ce que j'identifierais comme points forts et défauts de mon travail ? • Lorsque je refais un devoir ou une tâche comme celle-ci, qu'est-ce que je veux me rappeler de faire différemment ? Qu'est-ce qui a bien fonctionné pour moi et que je devrais utiliser la prochaine fois ?
• Qu'est-ce qui dans ma préparation à l'examen a bien fonctionné et que devrais-je penser à faire la prochaine fois ?
• Qu'est-ce qui n'a pas si bien fonctionné que je ne devrais pas faire la prochaine fois ou que je devrais changer ? • À quelles questions n'ai-je pas répondu correctement ? Pourquoi? Comment ma réponse peut-elle être comparée à la bonne réponse suggérée ? • À quelles questions n'ai-je pas répondu correctement ? Pourquoi? Quelles confusions ai-je et dois-je encore clarifier ?
• De quoi me souviendrai-je encore dans 5 ans de ce que j'ai appris dans ce cours ?
• Quels conseils pourrais-je donner à un ami sur la façon d'apprendre le mieux possible dans ce cours ? • Si je devais enseigner ce cours, comment le modifierais-je ? • Qu'ai-je appris sur la façon dont j'apprends dans ce cours et que je pourrais utiliser dans mes futurs cours de biologie/sciences ? Dans ma carrière ?

Jump-To-Science : donner envie d'accéder aux articles                plutot que vulgariser encourage le lecteur à aller vérifier dans l'article d'origine :  ici

Souvent les enseignants s'irritent d'élèves qui ne semblent pas comprendre ce qui est attendu d'eux : Bromme et al. (2010) montrent ici que c'est la façon dont l'étudiant-e imagine ce qui est attendu qui détermine la façon dont il-elle oriente son apprentissage 

Commentaire de Christian Lovis,

C. Lovis est -entre autres - responsable du Service des sciences de l'information médicale des HUG et professeur à la faculté de médecine de l'UNIGE, c'est  un spécialiste de l'IA. 
"Il est l'un des principaux experts suisses dans le domaine de la gestion des données, de l'interopérabilité, de la sémantique et de l'analyse des données appliqués à la santé ainsi qu'aux contextes cliniques".Cf. ici

"La capacité à juger de ce qui est contrefactuel, de ce qui est insuffisant, ou redondant, dépend de ses propres connaissances ou d'un gros travail de recherche.

Les LLM ont d'immenses « connaissances », et une compétence objective, by design, de génération, d'où leur nom de modèles génératifs. Ce sont des créateurs !

Ils n'ont en revanche pas de compétences cognitives, ou alors éventuellement comme propriétés émergentes, mais c'est débattu et plus un objet de croyance que de science à l'heure actuelle. Il faut reconnaître qu'il est plus simple de montrer leur incompétence cognitive que de démontrer la naissance d'une propriété émergente cognitive.

Ce que cela signifie pour moi par rapport à la pédagogie ne me semble pas changer beaucoup de ce que la pédagogie dit depuis Montaigne. Une tête bien faite – une tête bien pleine.  Une personne qui sait tout, peut aussi être le sommet de la bêtise, et malgré tout aura des avantages compétitifs dans une société qui mise beaucoup sur le savoir.

Mais  doit-on véritablement se mettre dans ces extrêmes, et ne pas considérer l'IA comme une nouvelle intelligence qui s'ajoute à toute celles qu'on a déjà ? Et apprendre à l'utiliser ?"

Avec l'IA générative, on a toujours affaire à un travail de groupe !

Considérer l'IA comme une nouvelle intelligence qui intervient dans l'éducation, c'est aussi ce que propose David Wiley dans son Blog : avec les IA génératives, l'activité des élèves doit être vue et évaluée comme un travail de groupe, une collaboration des intelligences "All work is group work now : Collaborative learning as a pedagogical and assessment framework for learning with generative AI"
Il propose un cadre pour penser l'éducation et l'évaluation. " L'idée centrale est de ne plus de considérer l'IA générative comme un outil mais de la considérer comme un collaborateur légitime. Ce changement de cadre vous permet de commencer à voir comment la recherche, la théorie et la pratique existantes en matière d'apprentissage collaboratif – et d'apprentissage social plus largement – pourraient être adaptées pour nous aider à comprendre comment utiliser l'IA générative pour soutenir efficacement l'apprentissage."
S'inspirant de toute la recherche sur l'apprentissage collaboratif, Wiley propose
  • "Introduire le travail avec l'IA générative au début du semestre pour définir clairement les attentes envers les étudiants.
  • Établir des règles de base pour la participation et les contributions.
  • Planifier chaque étape de la collaboration avec l'IA générative.
  • Expliquer soigneusement à vos étudiants comment fonctionnera la collaboration avec l'IA générative et comment les étudiants seront notés.
  • Aider les élèves à développer les compétences dont ils ont besoin pour réussir, […] notamment les techniques de métacognition.
  • Penser à formaliser les responsabilités par des contrats écrits.
  • Intégrer l'auto-évaluation et l'évaluation par les pairs pour que les apprenants puissent évaluer leurs propres contributions et celles de l'IA générative." Jump-To-Science : donner envie d'accéder aux articles                plutot que vulgariser encourage le lecteur à aller vérifier dans l'article d'origine :  ici
L'irruption d'autres intelligences dans le triangle didactique (ou pédagogique) peut être discutée comme un Tétraèdre avec l'IA comme 4ème pôle (Lombard, F., 2007)Jump-To-Science : donner envie d'accéder aux articles                plutot que vulgariser encourage le lecteur à aller vérifier dans l'article d'origine : ici


(Les membres Jump-To-Science peuvent obtenir ces articles).

Références:

  • Bromme, R., Pieschl, S., & Stahl, E. (2010). Epistemological beliefs are standards for adaptive learning : A functional theory about epistemological beliefs and metacognition. Metacognition and Learning, 5(1), 7‑26. https://doi.org/10.1007/s11409-009-9053-5
  • Castelvecchi, D. (2020). Is facial recognition too biased to be let loose? Nature, 587(7834), 347‑349. https://doi.org/10.1038/d41586-020-03186-4
  • Crowe, A., Dirks, C., & Wenderoth, M. P. (2008). Biology in bloom : Implementing Bloom's taxonomy to enhance student learning in biology. Life Sciences Education, 7(4), 368. https://doi.org/10.1187/cbe.08-05-0024.
  • Département de l'instruction publique, de la formation et de la jeunesse (DIP). (2019). Plan d'action en faveur de l'éducation numérique. https://edu.ge.ch/enseignement/education-numerique/actualites/plan-daction-en-faveur-de-leducation-numerique-2768
  • Erduran, S. (2023). AI is transforming how science is done. Science education must reflect this change. Science, 382(6677), eadm9788. https://doi.org/10.1126/science.adm9788
  • Dennis, M., Jaques, N., Vinitsky, E., Bayen, A., Russell, S., Critch, A., & Levine, S. (2020). Emergent Complexity and Zero-shot Transfer via Unsupervised Environment Design. NeurIPS, 12.
  • Hu, S., & Clune, J. (2023, juin 1). Thought Cloning : Learning to Think while Acting by Imitating Human Thinking. arXiv.Org. https://arxiv.org/abs/2306.00323v2
  • Lombard, F. (2007). Du triangle de Houssaye au Tétraèdre des TIC : Comment l'analyse des productions TIC permet d'approcher une compréhension des interactions entre les savoirs d'expérience et de recherche . In B. Charlier & D. Peraya (Eds.), Les technologies éducatives : une opportunité d'articuler les savoirs d'expérience et ceux issus de la recherche ? Bruxelles : De Boeck.
    pdf)
  • Oregon state University. (s. d.). Advancing Meaningful Learning in the Age of AI – Artificial Intelligence Tools – Faculty Support | Oregon State Ecampus | OSU Degrees Online. Artificial Intelligence Tools Advancing meaningful learning in the age of AI. Consulté 16 janvier 2024, à l'adresse https://ecampus.oregonstate.edu/faculty/artificial-intelligence-tools/meaningful-learning/
  • Perrenoud, P. (2004). Métier d'élève et sens du travail scolaire (4ème édition). E.S.F.
  • Stasse, S. (2023, septembre 14). Bloom revisité à la sauce IA. CADRE21. https://www.cadre21.org/pedagogie/bloom-revisite-a-la-sauce-ia
  • Tanner, K. D. (2012). Promoting Student Metacognition. Cell Biology Education, 11(2), 113‑120. https://doi.org/10.1187/cbe.12-03-0033
  • Turbé, H., Bjelogrlic, M., Lovis, C., & Mengaldo, G. (2023). Evaluation of post-hoc interpretability methods in time-series classification. Nature Machine Intelligence, 5(3), 250‑260. https://doi.org/10.1038/s42256-023-00620-w
  • UNESCO pour l’éducation, la science et la culture, Miao, F., & Holmes, W. (2023). Guidance for generative AI in education and research. pdf
  • Wiley, D. (). All work is group work now : Collaborative learning as a pedagogical and assessment framework for learning with generative AI. Improving Learning  Eclectic, Pragmatic, Enthusiastic. Consulté 23 janvier 2024, à l'adresse https://opencontent.org/blog/archives/7324

Remerciements

Merci à Christian Lovis pour son commentaire et à Laura Weiss pour une relecture et des commentaires constructifs

Révision  le 24.01.2024 à 12:53  pour ajouter la référence au document de l'UNESCO