Bio-Tremplins : un volet de Jump-To-Science focalisé sur les changements de la biologie et son enseignement.
Pour développer et maintenir vivant le lien entre la recherche et l'enseignement. Des éclairages sur l'actualité scientifique , comme un tremplin vers la source de l'information scientifique
Le site Il était une fois l'ADN (DNAFTB) était très utilisé par les enseignants.tes du secondaire, mais la disparition du système Flash l'a écarté de nos configurations.
L'Université de Genève avait fait la traduction française du travail remarquable du Dolan DNA Learning Center, Cold Spring Harbor Laboratory http://www.dnaftb.org/. Ils l'ont récemment mis à jour pour les ordinateurs actuel.
Or, Daniel Scherly et Laurent Roux viennent de fair le nécessaire pour la version française (les animations Flash émulées avec RUFFLE), les liens ont été contrôlés pour qu'ils soient à jour quand cela a été possible… MERCI à EUX !!!
41 concepts, des animations, des questions et problèmes
Le site s'organise autour de 41 concepts accessibles sur la droite et pour chacun une description du concept, des animations, des ressources multimédia, des problèmes et des liens
Prédire la structure d'une protéine à partir de sa séquence, puis déterminer la séquence d'une protéine qui aura la forme et la fonction désirée
En quelques mois une des grandes questions en biologie obtient une réponse: des chercheurs ont développé AlphaFold un système d'Intelligence Artificielle (IA) capable de prédire avec précision les formes 3D des protéines à partir de leurs séquences d'acides aminés (a.a.) -leur structure secondaire et tertiaire à partir de la structure primaire en somme. Ils mettent librement à disposition de tous les structures très probables de presque toutes les protéines connues, plus de 200 millions, des bactéries aux humains.
Peu après cela l'équipe de Baker utilisant cette IA et d'autres ont pu faire l'inverse : trouver une séquence d'a.a. qui se repliera en prenant la forme d'une protéine souhaitée (médicament, vaccin, traitement de déchets etc.). Ils ont même pu produire des protéines qui n'ont jamais existé par un procédé qu'ils ont joliment nommé "hallucination" (ils en font un verbe transitif : nous avons halluciné une protéine qui a telle fonction ...). Leur procédé n'est pas sans ressembler à l'évolution : effectuer de nombreuses modifications aléatoires de la séquence ( comme les mutations et recombinaisons), puis prédire par IA la structure de chacune (comme l'expression du génome en phénotype) et choisir la séquence qui donner la structure la plus proche de ce qu'on cherche (comme la sélection naturelle), et recommencer jusqu'à satisfaction. Ensuite faire exprimer cette protéine dans une bactérie et vérifier son activité. Ils sont récemment passé au niveau supérieur et ont même halluciné des assemblages de protéines (structure quaternaire) cf. fig 2 et ci-contre.
Implications pour l'enseignement de la biologie
JTS a sélectionné ces recherches parce qu'elles soulèvent plusieurs question importantes pour les enseignants. Elles sont importantes pour aider les élèves à comprendre ce que les médias en disent. Aussi parce que la biologie change, qu'elle est de plus en plus in silico mais s'articule avec la biologie moléculaire où ces prédictions reprennent contact avec le monde matériel pour vérifier leurs effets. Également parce que cela pose la question du naturel et des limites du vivant - qui définit en principe la biologie. Enfin parce que le métier de biologiste change pour devenir plus ingénieur ? C'est une différence de posture très significative. Faut-il refléter ces changements dans nos cours ? Et comment ? JTS développe un peu ces questions plus bas.
« Nouvelle ère de la biologie numérique » : l'IA révèle les structures de presque toutes les protéines connues
Travis, J. (2022), dans une News de Science ici , écrit : "L'avancée du logiciel AlphaFold de DeepMind pourrait révolutionner la biologie et la médecine" Il y a douze mois, la société d'intelligence artificielle (IA) DeepMind avait surpris de nombreux scientifiques avec la publication de structures prédites pour quelque 350 000 protéines Tunyasuvunakool,…Hassabis, et al.(2021)ici . Cette recherche a été sélectionnée comme une des percées scientifiques de l'année 2021.
Fig 1 : à droite Structure prédite par AlphaFold d'une protéine sur un stade d'un parasite du paludisme
Depuis, Hassabis, et al. (2022) ici ont dévoilé les structures probables de presque toutes les protéines connues - plus de 200 millions - des bactéries aux humains, une réalisation remarquable pour l'IA et un trésor potentiel pour le développement de médicaments et la recherche en biologie. (Travis, J. (2022), traduction Google par IA ;-) retouchée)
Un défi scientifique résolu ?
AlphaFold, est l'un des nouveaux programmes d'IA qui a résolu ce défi de longue date : déterminer avec précision les formes 3D des protéines à partir de leurs séquences d'acides aminés. (leur structure tertiaire à partir de la structure primaire).
Il faut noter que l'IA n'explique pas le mécanisme par lequel la protéine se replie - alors que la biologie cherche habituellement les mécanismes sous-jacents. Cet IA est une "boite noire" qui produit un résultat très utilisable, mais ce qu'il y a dedans reste mystérieux. Alphafold ayant été nourri d'un grand nombre de séquences d'.a.a (trouvées chez UniProt :-) et des structures correspondantes (de chez PDB) "apprend" et - une fois cette longue phase réalisée - peut très vite associer une structure 3D à partir de la séquence d'a.a. qu'on lui donne.
Les protéines résolues par AlphaFold proviennent d'organismes allant des bactéries aux plantes en passant par les vertébrés, y compris les souris, les poissons zèbres et les humains. Kathryn Tunyasuvunakool, chercheuse chez DeepMind, a déclaré qu'il fallait environ 10 à 20 secondes à AlphaFold pour faire chaque prédiction de protéine. (Travis, J. (2022), traduction google translate (par IA ;-) retouchée)
encourage le lecteur à aller vérifier dans l'article d'origine :
Tunyasuvunakool, K., Adler, J., Wu, Z., Green, T., Zielinski, M., Žídek, A., Bridgland, A., Cowie, A., Meyer, C., Laydon, A., Velankar, S., Kleywegt, G. J., Bateman, A., Evans, R., Pritzel, A., Figurnov, M., Ronneberger, O., Bates, R., Kohl, S. A. A., … Hassabis, D. (2021). Highly accurate protein structure prediction for the human proteome. Nature, 596(7873), 590‑596. https://doi.org/10.1038/s41586-021-03828-1
Ces structures sont aussi disponibles pour tous depuis les banques de données UniProt et PDB qui ont fourni le "matériel" pour éduquer AlphaFold
"AlphaFold est une avancée capitale des sciences de la vie qui démontre la puissance de l'IA" "Avec ce nouvel apport de structures qui révèle presque tout l'univers des protéines, nous pouvons nous attendre à ce que davantage de mystères biologiques soient résolus chaque jour." (in Travis, J. (2022), traduction google translate (par IA ;-) retouchée)
Des potentiels fascinants …
Des chercheurs utilisent déjà les prédictions de structure pour développer des vaccins potentiels, sonder des questions de biologie fondamentale telles que la façon dont le complexe de pore nucléaire contrôle quelles molécules pénètrent dans le noyau d'une cellule, ou examinent l'évolution des protéines dans l'origine de la vie. Hassabis, cependant, rappelle que la mise à disposition des structures n'est qu'un point de départ. "Il y a encore évidemment beaucoup de biologie, et de chimie, qui doivent être faites."
Une « nouvelle ère de la biologie numérique » dans laquelle les développeurs de médicaments pourraient disposer plus vite des structures de protéines impliquées dans diverses maladies et affections afin de mieux concevoir de petites molécules qui agissent sur ces protéines et donc traiter ces maladies. (Travis, J. (2022), traduction google translate (par IA ;-) retouchée) encourage le lecteur à aller vérifier dans l'article d'origine : ici
Depuis une prédiction de ce qu'on pourrait observer … vers une ingénierie de protéine originales composées à volonté
A peine remis de l'étonnement émerveillé de voir l'IA réussir à prédire la structure d'une protéine à partir de sa séquence, …(et peut-être perturbé par les implications dans nos cours ?) voici que des chercheurs ont réussi la fonction inverse : établir la séquence d'acides aminés qui donnera la forme d'une protéine souhaitée !
En quelques secondes plutôt que péniblement en plusieurs mois
(Callaway, E. (2022), dans une News de Nature écrit " le tout premier médicament à être fabriqué à partir d'une nouvelle protéine conçue par l'homme a été autorisé. Ce vaccin COVID 19 est basé sur une « nanoparticule » de protéine sphérique qui a été créée par des chercheurs il y a près de dix ans, grâce à un processus d'essais et d'erreurs très long et fastidieux. (Hsia, et al., 2016) ici.
Une équipe dirigée par David Baker, biochimiste à l'Université de Washington (UW) à Seattle, rapporte dans Science (Dauparas,2022)ici, et (Wicky,2022) ici qu'elle a mis au point des IA capables de concevoir de telles molécules en quelques secondes au lieu de plusieurs mois ou années. (d'après Callaway, E. (2022))
encourage le lecteur à aller vérifier dans l'article d'origine :
Dauparas, J., Anishchenko, I., Bennett, N., Bai, H., Ragotte, R. J., Milles, L. F., Wicky, B. I. M., Courbet, A., de Haas, R. J., Bethel, N., Leung, P. J. Y., Huddy, T. F., Pellock, S., Tischer, D., Chan, F., Koepnick, B., Nguyen, H., Kang, A., Sankaran, B., … Baker, D. (2022). Robust deep learning–based protein sequence design using ProteinMPNN. Science, 0(0), eadd2187. https://doi.org/10.1126/science.add2187
Wicky, B. I. M., Milles, L. F., Courbet, A., Ragotte, R. J., Dauparas, J., Kinfu, E., Tipps, S., Kibler, R. D., Baek, M., DiMaio, F., Li, X., Carter, L., Kang, A., Nguyen, H., Bera, A. K., & Baker, D. (2022). Hallucinating symmetric protein assemblies. Science, 0(0), eadd1964. https://doi.org/10.1126/science.add1964
La plupart de ces recherches se concentrent sur des outils qui peuvent aider à fabriquer des protéines originales, dont la forme ne ressemble à rien dans la nature (cf. Fig 2), sans trop se concentrer sur ce que ces molécules peuvent faire. Mais les chercheurs - et un nombre croissant d'entreprises qui appliquent l'IA à la conception de protéines - aimeraient concevoir des protéines capables de fonctions utiles, du nettoyage des déchets toxiques au traitement des maladies.
Partant de zéro Le laboratoire de Baker a passé les trois dernières décennies à fabriquer de nouvelles protéines. Un logiciel appelé Rosetta, que son laboratoire a commencé à développer dans les années 1990, divise le processus en étapes. Initialement, les chercheurs ont conçu une forme pour une nouvelle protéine - souvent en bricolant des morceaux d'autres protéines - et le logiciel a déduit une séquence d'acides aminés qui correspondait à cette forme. Mais ces protéines de « première ébauche » se repliaient rarement dans la forme souhaitée lorsqu'elles étaient fabriquées en laboratoire. Une autre étape était donc nécessaire pour modifier la séquence protéique de manière à ce qu'elle ne se replie que dans la structure souhaitée. Cette étape, qui impliquait de simuler toutes les manières dont différentes séquences pourraient se replier, était très lente : il fallait 10 000 ordinateurs fonctionnant pendant des semaines… (Callaway, E. (2022), traduction google translate (par IA ;-) retouchée)
Halluciner une protéine ! Halluciner devient un verbe transitif? "De novo protein design by deep network hallucination"
En ajustant leurs programmes pour itérativement tester des variantes aléatoires, l'équipe de Baker a développé une nouvelle approche appelée hallucination, dans laquelle les chercheurs introduisent itérativement de très nombreuses séquences aléatoires d'acides aminés - puis ils testent avec AlphaFold et un outil similaire appelé RoseTTAFold de quelle manière cela a modifié la structure et sélectionnent les plus adaptées afin qu'elle ressemblent de plus en plus à la protéine souhaitée. Ces séquences finales d'acides aminés codent pour des protéines qui peuvent ensuite être fabriquées et étudiées en laboratoire. (D'après Callaway, E. (2022)) JTS suggère qu'on peut le comparer aux mutations, recombinaisons, expression du génome en phénotype et à la sélection naturelle dans l'évolution.
Commencer par du charabia puis muter, prédire la forme, et sélectionner les plus adaptées.
Pour expliquer comment les réseaux de neurones "hallucinent" une nouvelle protéine, l'équipe de Baker la compare à la façon dont elle pourrait écrire un livre : "Vous commencez avec un assortiment aléatoire de mots - un charabia total. Ensuite, vous imposez une exigence telle que dans le paragraphe d'ouverture, il faut que ce soit une nuit sombre et orageuse. Ensuite, l'ordinateur changera les mots un par un et se demandera : « Est-ce que l'histoire a plus de sens ? ». Si c'est le cas, il conserve les modifications jusqu'à ce qu'une histoire complète soit écrite », Traduction de Baker Lab. (2022, juillet 21). Training A.I. to generate medicines and vaccines. Baker Lab.
Dans un article de 2021 dans Science, "De novo protein design by deep network hallucination" l'équipe de Baker révèle qu'ils avaient créé plus de 100 petites protéines «hallucinées» en laboratoire et environ un cinquième ressemblait à la forme prédite (Anishchenko, et al. 2021) ici.
Ils sont ensuite passé au wet lab la pour confirmer ces prédictions "nous avons caractérisé expérimentalement les hallucinations générées par ordinateur en obtenant des gènes synthétiques pour les 129 protéines, et en les exprimant et en les purifiant à partir d'E. coli" Deux lignes de biologie moléculaire dans un article essentiellement de biologie numérique… La biologie change !
Designer une protéine c'est bien, en concevoir plusieurs s'assemblant, c'est mieux ?
Les chercheurs ont rapidement découvert que de tels réseaux pouvaient également modéliser des assemblages de plusieurs protéines. Sur cette base, Baker et son équipe (Baek,…Baker et al.,(2021)ici. ont montré qu'ils pouvaient halluciner des protéines qui s'auto-assembleraient en nanoparticules de différentes formes et tailles. encourage le lecteur à aller vérifier dans l'article d'origine :
Baek, M., DiMaio, F., Anishchenko, I., Dauparas, J., Ovchinnikov, S., Lee, G. R., Wang, J., Cong, Q., Kinch, L. N., Schaeffer, R. D., Millán, C., Park, H., Adams, C., Glassman, C. R., DeGiovanni, A., Pereira, J. H., Rodrigues, A. V., van Dijk, A. A., Ebrecht, A. C., … Baker, D. (2021). Accurate prediction of protein structures and interactions using a three-track neural network. Science, 373(6557), 871‑876. https://doi.org/10.1126/science.abj8754
Implications pour l'enseignement de la biologie
JTS estime que ces recherches soulèvent des question importantes et méritent l'attention des enseignants à plusieurs titres.
Parce que c'est passionnant de voir une des grandes questions de la biologie obtenir une réponse… qui pose de nouvelles questions.
Ces recherches sont reprises dans les médias, forcément simplifiées et en général surtout les conclusions sensationnalistes et les applications potentielles, mais pas les méthodes, le contexte et les limites. Les comprendre pour faire face à des questions d'élèves peut les aider à comprendre et ... participer à leurs prises de décision en tant que citoyen-ne future ou actuelle.
Parce que cela montre encore une fois que les savoirs de recherche que la recherche produit sont établis non plus par des opérations moléculaires, mais de biologie numérique (et peut-être apprivoiser le terme bioinformatique ?). Si la biologie change profondément, la question de l'intégration dans nos programmes et pratiques en classe pourra-t-elle encore longtemps être écartée ?
Parce que - quand même - à la fin on vérifie dans le "wet lab" par des techniques classiques de génie génétique si la protéine est bien celle attendue. In fine c'est dans le monde des molécules qu'on juge de la réussite. Hassabis (2022) dit que la mise à disposition de ces structures n'est qu'un point de départ."Il y a encore évidemment beaucoup de biologie, et beaucoup de chimie, qui doivent être faites." Ouf ! La biologie in silico - ou numérique ne remplace pas mais complète la biologie in vitro.
Parce que la délimitation du naturel devient plus délicate : ces protéines synthétisée par des processus de biosynthèse classique - le génie génétique que nous avons découverts et non inventé peuvent encore être considérés comme naturels par certains, mais la production de protéines nouvelles n'existant pas dans la nature est-elle encore naturelle ? biologique ? fait-elle parie de l'étude du vivant ?
Parce que la biologie devient avec la biologie de synthèse (cf. JTS Au-delà du génie génétique : la biologie synthétique. ) et ces travaux encore plus une ingénierie au service de production humaines - Callaway (2022) mentionne médicaments, vaccins, traitement des déchets.
Parce qu'on s'éloigne encore plus du naturaliste contemplatif qui a dominé la biologie de la première moitié du siècle passé, de la biologie moléculaire, une recherche fondamentale, qui cherche à comprendre - en termes moléculaires - les mécanismes sous-jacents des phénomènes vivants. Avec cette nouvelle biologie, on ne se limite plus au vivant, on utilise la compréhension - ou du moins les possibilités d'application - pour produire de l'utile. C'est un changement de posture très significatif. Faut-il le refléter dans nos cours ? Et comment ?
Un important chantier de réflexion sur l'essence de notre discipline mérite d'être ouvert - y participer avant qu'on nous impose une réforme ?
Références:
Anishchenko, I., Pellock, S. J., Chidyausiku, T. M., Ramelot, T. A., Ovchinnikov, S., Hao, J., Bafna, K., Norn, C., Kang, A., Bera, A. K., DiMaio, F., Carter, L., Chow, C. M., Montelione, G. T., & Baker, D. (2021). De novo protein design by deep network hallucination. Nature, 600(7889), 547‑552. https://doi.org/10.1038/s41586-021-04184-w
Dauparas, J., Anishchenko, I., Bennett, N., Bai, H., Ragotte, R. J., Milles, L. F., Wicky, B. I. M., Courbet, A., de Haas, R. J., Bethel, N., Leung, P. J. Y., Huddy, T. F., Pellock, S., Tischer, D., Chan, F., Koepnick, B., Nguyen, H., Kang, A., Sankaran, B., … Baker, D. (2022). Robust deep learning–based protein sequence design using ProteinMPNN. Science, 0(0), eadd2187. https://doi.org/10.1126/science.add2187
Hsia, Y., Bale, J. B., Gonen, S., Shi, D., Sheffler, W., Fong, K. K., Nattermann, U., Xu, C., Huang, P.-S., Ravichandran, R., Yi, S., Davis, T. N., Gonen, T., King, N. P., & Baker, D. (2016). Design of a hyperstable 60-subunit protein icosahedron. Nature, 535(7610), 136‑139. https://doi.org/10.1038/nature18010
Tunyasuvunakool, K., Adler, J., Wu, Z., Green, T., Zielinski, M., Žídek, A., Bridgland, A., Cowie, A., Meyer, C., Laydon, A., Velankar, S., Kleywegt, G. J., Bateman, A., Evans, R., Pritzel, A., Figurnov, M., Ronneberger, O., Bates, R., Kohl, S. A. A., … Hassabis, D. (2021). Highly accurate protein structure prediction for the human proteome. Nature, 596(7873), 590‑596. https://doi.org/10.1038/s41586-021-03828-1
Wicky, B. I. M., Milles, L. F., Courbet, A., Ragotte, R. J., Dauparas, J., Kinfu, E., Tipps, S., Kibler, R. D., Baek, M., DiMaio, F., Li, X., Carter, L., Kang, A., Nguyen, H., Bera, A. K., & Baker, D. (2022). Hallucinating symmetric protein assemblies. Science, 0(0), eadd1964. https://doi.org/10.1126/science.add1964
La biologie change … faut-il changer son enseignement ?
Durant mes études de biologie, digital(e) évoquait une fleur belle mais toxique, que les femmes romaines utilisaient pour dilater leurs pupilles. Selon Desmond Morris (1977) cette dilatation exprimant un intérêt, cela contribuait à leur séduction. Actuellement ce terme fait référence aux profondes transformations de la manière dont les savoirs sont produits, communiqués et transformés dans chaque discipline.
Par exemple la structure de quasiment toutes les protéines connues a été établie par l'intelligence artificielle. C'est une « Nouvelle ère de la biologie… » selon Travis, J. (2022). JTS Y reviendra bientôt. encourage le lecteur à aller vérifier dans l'article d'origine : ici
Ou encore Lluís Quintana-Murci - a montré comment les métissages d'Homo sapiens ont apporté une meilleure immunité aux européens, or ses méthodes sont principalement digitales : JTS du 25 novembre 21
L'école peut-elle ignorer cette transformation de ce qu'est la Biologie ? Faut-il lui opposer la biologie de terrain, naturaliste ?
Humanités digitales et biologie numérique …
C'est une exigence fédérale, les implications éducatives et sociétales de ces changements doivent être intégrées. Dès cette rentrée à Genève. La question de la place du numérique dans les enseignements ne peut plus être écartée : on voit bien que le changement va se produire et il vaut peut-être mieux y participer que le subir ?
De la biologie virtuelle...? Non, mais au coeur de la recherche expérimentale !
Soulignons qu'il ne s'agit d'opposer du virtuel au réel ou à l'expérimental : l'expérimentation reste centrale dans la recherche, mais change de méthodes et d'outils. Les projets de recherche en biologie consistent toujours à poser les bonnes questions, à imaginer des expériences, puis à faire les expériences. Les expériences génèrent aujourd'hui de très grandes quantités de données (le séquençage par exemple). Le traitement de ces données constitue souvent la plus-value centrale d'une publication scientifique.
Nécessaire pour former des citoyens capables de comprendre et décider
Beaucoup de ces recherches de grande envergure sont vulgarisés et relayés dans les médias. On sait que les aspects les plus sensationnalistes voire des fake news sont les plus souvent relayées et qu'en conséquence les élèves et le public sont confrontés à des informations qui ont souvent perdu leur caractère scientifique. Comprendre ce que ces recherches signifient et comment les mettre en perspective nécessite de comprendre les grandes lignes des méthodes numériques pour pouvoir en juger la portée et les limites. Ces savoirs et compétences devront bien être inclus dans les programmes un jour.
Des formations continues…
Une formation continue est organisées avec Marie-Claude Blatter du SIB, sur les usages possibles en classe, sur les preuves de l'évolution, sur la diversité humaine, sur la médecine personnalisée, sur la prédiction de médicament et les rôles des protéines, sur les modèles 3D de structure authentique de protéines à imprimer. Un projet du DIP rassemble large sélection de scénarios - testés en classe La biologie numérique : quelles opportunités pour mieux enseigner ?
Cette formation continue permettra à chacun de les découvrir et de se familiariser avec une sélection adaptée à son enseignement le 12 octobre -> il reste quelques places s'inscrire ici.
Lombard, F., Schneider, D. K., & Weiss, L. (2020). Jumping to science rather than popularizing : A reverse approach to update in-service teacher scientific knowledge. Progress in Science Education (PriSE), 3(2), 54‑60. https://doi.org/10.25321/prise.2020.1005