mercredi 8 décembre 2010

Les mousses projettent plus loin leurs spores grâce a un "rond de fumée" !

Les spores projetées dans le vent grâce à un vortex

Une étude révèle que certaines mousses du genre Sphagnum projettent leurs spores comme un canon - les accélérant de 32'000g - et exploitent un phénomène aérodynamique qui les emporte à 15-20 cm, beaucoup plus haut que prévu : le frottement de l'air devrait les arrêter après quelques millimètres ! Une capsule qui se contracte en séchant, un opercule qui cède au moment crucial, et un tourbillon en anneau - un peu comme ceux des  ronds de fumée (un vortex) - permettent aux spores d'atteindre les couches d'air plus haut où le vent peut les emporter plus loin et assurer la dissémination efficace qui a permis à ces mousses de traverser les bouleversements de nombreux millions d'années.

La dissémination des spores ... un problème !

On sait combien la dissémination des spores est un problème pour les mousses : la couche d'air au raz du sol est presque immobile, même quand il y a du vent. On sent bien en se couchant dans l'herbe un jour de  bise que le vent diminue près du sol. Pour les mousses qui vivent dans les premiers millimètres, faire parvenir les spores le plus haut possible pour qu'elles trouvent un endroit au loin afin de s'y développer est décisif. Les mousses actuelles sont les descendantes de celles qui avaient des adaptations leur permettant de continuer à vivre ailleurs lorsque leur milieu a cessé d'être viable !
 
Fig 1 : Le sporange s'élève au-dessus du reste de la mousse.  [img]Source :F.Lombard 
 
Pour le genre Sphagnum (285 espèces), Whitaker, D. L., & Edwards, J. (2010) publient des chiffres intéressants (Extraits intranet.pdf) qui donnent la mesure du problème. Les spores (de 22 à 45 µm) retombent à une vitesse de 0.5 à 2cm/s : un  vent très légèrement turbulent suffit donc à les maintenir en l'air. Pour atteindre ces vents transporteurs, turbulents (à plus de 10 cm de haut)  il faut libérer les spores en hauteur  - c'est ce que permet la forme en lance (cf figure 1) de beaucoup de sporanges. Mais cela ne fait qu'un cm environ - et les projeter au loin donne beaucoup plus de chances de dissémination; c'est ce que discute l'article.

L'air est un frein énorme pour les spores

Parce que par rapport à nos tailles leur surface diminue seulement au carré et leur volume - donc leur poids - diminue au cube, les objets minuscules sont beaucoup plus soumis au frottement de l'air.  Le frottement dans l'air est donc énorme pour des spores , car il est lié à la surface (proportionnellement beaucoup plus grande par rapport au poids que pour nous). Rapporté à notre taille c'est comme si l'air était franchement visqueux. Ou, dit autrement, c'est comme si on essayait de jouer au foot ou au tennis avec des ballons de baudruche : même lancés à toute vitesse, il ralentissent très vite et retombent mollement. Les physiciens parlent de nombre de Reynolds faible : les forces de viscosité sont plus importantes que celles d'inertie (MacMahon, T. A., et al., 1983). Ainsi le frottement devrait limiter la distance que peuvent atteindre les spores à moins d'un cm. Cf fig 2. bleu et vert.
La distance parcourue selon les calculs balistiques en air calme (bleu et vert) et la distance observée du nuage points rouges et sa largeur triangles.
Fig 2 : A, B Fig 3 : Le sporange  se rétrécit et compresse l'air dans le bas du sporange  C La distance parcourue selon les calculs balistiques en air calme (bleu et vert) et la distance observée du nuage points rouges et sa largeur triangles. D Vidéo ultra-rapide (20'000 i/s)  de la libération massive des spores qui produit un tourbillon en anneau.  [img]Source : Whitaker, D. L., & Edwards, J. (2010)  
 
Un physicien et un biologiste américains  Whitaker, D. L., & Edwards, J. (2010) se sont associés pour publier dans Science un article ici qui analyse le cas de Sphagnum fimbriatum : les prédictions selon la balistique simple et les observations sont confrontés et mettent en évidence l'effet d'un vortex.  
Le sporange Fig 3A  se rétrécit en séchant et compresse l'air dans la partie inférieure (Fig 3B) à  des pressions de 200 à 500 kPa. Dans le même numéro Johan L. van Leeuwen (2010) décrit comment la pression finit par faire exploser l'opercule libérant les spores (20,000 à 240,000) que la pression de l'air propulse, comme dans un (minuscule) canon, avec une vitesse de libération de  16 ± 7 m s–1 et à une hauteur moyenne de 114 ± 9 mm. L'accélération est de 32'00g. Ça c'est du spore !(ok il est pas terrible, mais je pouvais pas laisser passer cette occasion de le placer...)
Pour se  faire une idée, une accélération de 2g est atteinte par les voitures de sport en F1 et les avions de chasse font subir  quelques 6g à leurs pilotes mais soutenus par des combinaisons spéciales... Des spores isolées lancées avec une vitesse initiale de 13 m s–1 ne culmineraient théoriquement qu'à 2 à 7 mm en moins de 0.5 ms. Alors que les chercheurs ont observé (Fig 4B à droite) qu'en 5 ms, elles parcourent un trajet de plus de 40 mm à la fin duquel elles se déplacent encore à 3 m s–1 Spore discharge.,,(A) Spore capsule of Sphagnum fimbriatum on a short stalk. (B) The wet spherical capsule becomes cylindrical by drying. Quick release of the lid triggers spore discharge by internal air pressure. The jet of spores and air rolls up into a turbulent ring vortex that carries spores up to 15 to 20 cm. (C) Air pressure (above ambient) rises nonlinearly with the volume fraction of spores (ηsc). Initial spore acceleration is highest for both low and high ηsc because of low spore mass or high pressure. Vspores/Vwall is the spore/wall volume ratio. Vertical tan line corresponds to the predicted optimum in spore content, similar to observed ηsc (2–4). Fig 4 : Sporange de Sphagnum fimbriatum (B) La capsule sphérique devient  cylindrique en séchant. La rupture de l'opercule libère les spores et la pression de l'air propulse les spores comme dans un canon. The jet of spores and air rolls up into a turbulent ring vortex that carries spores up to 15 to 20 cm. (C) Air pressure (above ambient) rises nonline.  [img]Source N. KEVITIYAGALA/SCIENCE  
Les auteurs expliquent que le vortex causé par la libération massive des spores - et d'air -  change le régime aérodynamique et produit un vortex - un tourbillon en anneau - (cf figure 5) qui accompagne le mouvement des spores à des hauteurs beaucoup plus élevées.

Des  vidéos des étapes de cette dissémination sont disponibles dans les Supporting Online Material  ici

Unique chez les végétaux ?

Des vortex sont produits par les méduses et les poulpes pour leur propulsion et les auteurs notent que c'est peut-être la première fois qu'on en décrit pour des plantes. Une telle dispersion facilitée par les vortex explique peut-être en partie le succès des Sphagnum, qui ont survécu à l'apparition des plantes vasculaires. Je me permets de noter que d'une certaine manière les mousses actuelles ont une évolution plus longue que les fougères, conifères ou plantes à fleur.  On pourrait dire de manière provocante qu'elles sont "plus évoluées" que les fougères ou les plantes à fleur... Histoire de montrer que toute tentative de voir l'évolution comme une ligne droite est incohérente.

L'aérodynamique du pollen : dispersion d'accord, mais la concentration ?

La question de l'aérodynamique de la dispersion du pollen est facilitée chez les gymnospermes et les angiospermes par la taille des arbres, mais à l'autre bout du trajet, pour le grain de pollen, se pose la question de la rencontre du gamète opposé - et surtout de la probabilité de cette rencontre. Surtout que le micropyle semble bien caché au fond des écailles. Là aussi (Niklas K. J. 1987) montre (cf fig 6) que d'efficaces tourbillons assurent la concentration du pollen juste sur le micropyle de l'ovule- un peu comme quand on remue une tasse de thé et que le sucre se concentre au fond et au centre de la tasse. Ou comme les particules de nourriture dans les branchies des moules probablement ! On pourrait se  demander si l'inventeur de l'aspirateur sans sac Dyson qui exploite des tourbillons similaires n'a fait que copier - ou réinventer - ce que les conifères font depuis des millions d'années...

[img intranet] et [img intranet]Fig 6  : L'aérodynamique de la pollinisation facilite la rencontre des gamètes. Source : Niklas K. J. (1987)
Là encore les hasards et la sélection ont produit des adaptations aux limites et parfois semblant dépasser les lois physiques ou les probabilités.

Sources

  • MacMahon, T. A., & Bonner, J. T. (1983). On size and life. Scientific American Books. 
  • Niklas K. J.. (1987). Aerodynamics of wind pollination. Scientific American July: 90-95. Trad : Pour la Science (1987) septembre  Extraits intranet.pdf
  • van Leeuwen, J. L. (2010). Launched at 36,000g.Science, 329(5990), 395-396. doi:10.1126/science.1193047
  • Whitaker, D. L., & Edwards, J. (2010). Sphagnum Moss Disperses Spores with Vortex Rings. Science, 329(5990), 406. doi : 10.1126/science.1190179  | Extraits intranet.pdf

1 commentaire: